Skip to main content

IoT & Hardware Integration Guide

Comprehensive documentation for integrating ML models with industrial IoT sensors and hardware systems


Overview

This documentation series provides a complete guide for integrating our water quality ML models with industrial IoT systems, specifically designed for compatibility with Neilsoft's plant engineering and industrial automation services.

Target Client: Neilsoft

  • Website: https://neilsoft.com
  • Key Services: Plant & Factory Engineering, Industrial Automation & IoT, BIM for Plants
  • Integration Focus: STP/ETP monitoring, SCADA systems, PLC integration

Documentation Index

#DocumentDescription
01Architecture OverviewSystem architecture and data flow
02Hardware SensorsRecommended sensors and devices
03Software StackIoT platforms and middleware
04Protocol AdaptersMQTT, OPC-UA, Modbus integration
05API IntegrationREST/WebSocket endpoints for IoT
06Edge DeploymentEdge computing and local inference
07Data PipelineReal-time data streaming architecture
08Neilsoft IntegrationClient-specific integration guide
09Implementation RoadmapPhase-wise implementation plan
10Testing & SimulationSensor simulation and testing

Our ML Models

ModelPurposeKey Parameters
Prediction ModelWater reusability prediction with CPCB complianceBOD, COD, TSS, TDS, pH, flow rate
Treatment ModelTreatment stage recommendationpH, TSS, Turbidity, BOD, COD, NH4-N
Twin EngineCombined reusability + treatment analysisAll parameters
Adaptive OptimizersReal-time simulation with anomaly detectionContinuous sensor streams

Quick Start

Prerequisites

  • Node.js 18+ / Python 3.10+
  • MQTT Broker (EMQX/Mosquitto)
  • Docker & Docker Compose
  • Access to sensor hardware or simulator

Installation

# Install IoT dependencies
npm install mqtt node-opcua modbus-serial

# Install edge inference dependencies
pip install tensorflow-lite onnxruntime

# Start MQTT broker (development)
docker run -d --name emqx -p 1883:1883 -p 8083:8083 emqx/emqx:latest

Architecture Preview

┌─────────────────────────────────────────────────────────────────┐
│ ML MODELS (Next.js API) │
│ Prediction | Treatment | Twin Engine | Adaptive Optimizers │
└─────────────────────────────────────────────────────────────────┘

│ REST API / WebSocket

┌─────────────────────────────────────────────────────────────────┐
│ IoT MIDDLEWARE LAYER │
│ Node-RED | Apache Kafka | AWS IoT Greengrass | Azure IoT Edge │
└─────────────────────────────────────────────────────────────────┘

│ MQTT / OPC-UA / Modbus

┌─────────────────────────────────────────────────────────────────┐
│ EDGE GATEWAY LAYER │
│ Siemens IOT2050 | Kepware KEPServerEX | Ignition Edge │
└─────────────────────────────────────────────────────────────────┘

│ 4-20mA / Modbus RTU / HART

┌─────────────────────────────────────────────────────────────────┐
│ SENSOR LAYER │
│ pH | BOD | COD | TSS | TDS | Flow | Temperature | DO │
└─────────────────────────────────────────────────────────────────┘

Key Benefits for Neilsoft Clients

  1. Real-time Monitoring: Live water quality predictions from sensor data
  2. CPCB Compliance: Automated compliance checking and alerts
  3. Treatment Optimization: AI-driven treatment recommendations
  4. Cost Reduction: Optimized chemical dosing based on predictions
  5. Predictive Maintenance: Anomaly detection for early warning
  6. Digital Twin: Integration with BIM models for 3D visualization

Support

For integration support, contact the development team or refer to individual documentation files for detailed implementation guides.


Last Updated: December 2024